

# **Technical Datasheet**



# **HM F Series**

Turbine Flow Meters with Flange Connections

## **Description**

The HM F turbine flow meter series (F for flange connections) is used to measure continuous and discontinuous flow rates. They are mainly used for lubrication and non-lubrication media. They are particularly suitable for low and medium viscosity liquids, such as water, emulsions, glycol mixtures and light oils.

Only high-grade steels that can withstand corrosive liquids are used in the production of turbine flow meters. Combined with the use of tungsten carbide bearings, the HM F guarantees optimum measurement accuracy and an extremely long service life even under the toughest application conditions.

The combination of various turbine wheel dimensions and blade geometries allows a wide range of sizes that can cover a huge measuring range. This makes the HM F ideal for a variety of applications in the field of metering as well as for monitoring, mixing and dosing.

Short response times, very dynamic performance and high measurement accuracy ensure accurate regulation and control of flow rates in the most demanding applications.

For applications in hazardous areas, we offer intrinsically safe sensors and amplifiers with Ex protection in accordance with ATEX, IECEx, CSA and other standards. Additional certifications such as EAC (TR-CU) are available.

## **Principle and Design**

Turbine flow meters (HM) are volume counters operating on the Woltmann impeller counter principle. They use the average flow velocity to record the flow rate through the pipe

The flow of the medium is directed at the turbine wheel in the axial direction and so rotated. The speed of the freely turning wheel over a wide range is directly proportional to the average flow velocity. The low weight of the turbine wheel ensures very short response times as well as very dynamic behaviour in flow changes. Two flow straighteners generate quasi-laminar flow, which in turn contributes to increasing the measurement accuracy.

The speed of the turbine wheel is measured by the sensor through the housing wall. The sensor system can be selected to meet the requirements of the individual application. This can provide, for example, a signal to indicate the direction of flow.

Pulses per unit of volume are available for analysis. The calibration factor (K-factor) of the flow meter describes the exact pulse rate per unit of volume. In order to determine the individual calibration factor of a flow meter, we calibrate each of our meters in house prior to delivery. The operating viscosity specified by the customer is taken into account for calibration. A corresponding calibration certificate is included with every flow meter we supply.

The KEM turbines feature a short response time between 5 and 50 ms depending on the nominal diameter, which is advantageous for precise filling processes.

Turbine flow meters have a resolution of up to 3,000 pulses per litre. The milled and turned precision components are the reason why the HM series has neither wetted weld seams nor soldered connections. All market-related requirements for piping and material standards can thus be fully guaranteed.

### **Applications**

- · Consumption measuremen
- Filling process
- · Dosing systems
- 2-component mixing plants
- · Test stands
- Water (polluted and demineralized)
- · Hydraulic and gear oils
- · Fuels, gasoline, kerosene
- Coolants
- Additives
- Solvents
- Pharmaceutical liquids

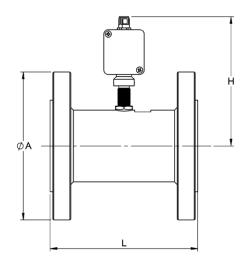
## **Features**

- Exceptional repeatability of ±0.05 %
- Short response times (from 5 ms)
- Robust carbide bearing
- Medium temperature: -60 °C up to +350 °C [-76 °F up to +662 °F]
- Different nominal sizes
- Flange standard DIN Form B, ASME Raised Face (RF) & Ring Type Joint (RTJ)

## Technical Data - Sizes

|                 |      | Measuring F | K Fastan |       |                          |                            |  |
|-----------------|------|-------------|----------|-------|--------------------------|----------------------------|--|
| Connection Size | Stan | dard        | Exte     | nded  | ~ K-Factor<br>(pulses/I) | ~ max. Fre-<br>quency (Hz) |  |
|                 | Min  | Max         | Min      | Max   | (puises/i)               |                            |  |
| DN 15 - ½"      | 5    | 50          | 1        | 50    | 3,150                    | 2,625                      |  |
| DN 25 - 1"      | 20   | 250         | 3        | 250   | 445                      | 1,854                      |  |
| DN 40 - 1 ½"    | 50   | 50 750      |          | 750   | 106                      | 1,325                      |  |
| DN 50 - 2"      | 70   | 1,200       | 20       | 1,200 | 65                       | 1,300                      |  |
| DN 65 - 2 ½"    | 100  | 2,000       | 30       | 2,000 | 25                       | 833                        |  |
| DN 80 - 3"      | 160  | 3,200       | 45       | 3,200 | 11                       | 587                        |  |
| DN 100 - 4"     | 250  | 5,000       | _        | _     | 7                        | 583                        |  |
| DN 150 - 6"     | 350  | 10,000      | _        | _     | 2.5                      | 417                        |  |

Measuring Accuracy Standard: ±1% of flow rate
Measuring Accuracy Premium<sup>1)</sup>: ±0.5% of flow rate
Repeatability: ±0.05% (in standard measuring range) All data is valid under reference conditions2)


## **Technical Data - General**

| Viscosity Range (Standard)  | 1 up to 10 mm²/s                                                                                                                                                                                                                                       |  |  |  |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Pressure Rating             | 16 up to 250 bar [232 up to 3,626 psi] (at room temperature) defined by the specification of the flange connections                                                                                                                                    |  |  |  |  |  |
| Temperature Rating (Medium) | -60 °C up to +350 °C [-76 °F up to +662 °F]                                                                                                                                                                                                            |  |  |  |  |  |
| Materials                   | Housing: as per DIN 1.4404 [AISI 316L], other material on request Internal parts: as per DIN 1.4404 [AISI 316L], other material on request Wheels: as per DIN 1.4462 [AISI S31803], other material on request Bearing: Tungsten carbide sleeve bearing |  |  |  |  |  |



Only in combination with suitable electronics with linearization function.
Reference conditions: viscosity 1 mm²/s; ambient temperature 23 °C [73 °F] ±5 °C [9 °F]; ambient pressure 963 mbar [14 psi] ±50 mbar [0.7 psi]; Humidity 60 % ±30 %.

## **Dimensional Drawing**



# Metric flanges as per DIN-EN 1092-1 Form B

| Commention size |                      |                      | 113)                 |                      |                     |                     |                     |  |
|-----------------|----------------------|----------------------|----------------------|----------------------|---------------------|---------------------|---------------------|--|
| Connection size | L                    | PN 16                | PN 40                | PN 100               | PN 160              | PN 250              | H <sup>3)</sup>     |  |
| DN 15           | 127 mm<br>[5.00 in]  |                      | 95 mm<br>[3.74 in]   | 105 mm<br>[4.13 in]  | 105 mm<br>[4.13 in] | 130 mm<br>[5.12 in] | 125 mm<br>[4.92 in] |  |
| DN 25           | 140 mm<br>[5.50 in]  | Please use<br>PN 40. | 115 mm<br>[4.53 in]  | 140 mm<br>[5.51 in]  | 140 mm<br>[5.51 in] | 150 mm<br>[5.91 in] | 132 mm<br>[5.20 in] |  |
| DN 40           | 152 mm<br>[6.00 in]  |                      | 150 mm<br>[5.91 in]  | 170 mm<br>[6.69 in]  | 170 mm<br>[6.69 in] | 185 mm<br>[7.28 in] | 140 mm<br>[5.51 in] |  |
| DN 50           | 165 mm<br>[6.50 in]  | 165 mm<br>[6.50 in]  | 165 mm<br>[6.50 in]  | 195 mm<br>[7.68 in]  | 195 mm<br>[7.68 in] | 200 mm<br>[7.87 in] | 145 mm<br>[5.71 in] |  |
| DN 65           | 178 mm<br>[7.00 in]  | 185 mm<br>[7.28 in]  | 185 mm<br>[7.28 in]  | 220 mm<br>[8.66 in]  | 220 mm<br>[8.66 in] | _                   | 153 mm<br>[6.02 in] |  |
| DN 80           | 254 mm<br>[10.00 in] | 200 mm<br>[7.87 in]  | 200 mm<br>[7.87 in]  | 230 mm<br>[9.06 in]  | 230 mm<br>[9.06 in] |                     | 160 mm<br>[6.30 in] |  |
| DN 100          | 305 mm<br>[12.00 in] | 220 mm<br>[8.66in]   | 235 mm<br>[9.25 in]  | 265 mm<br>[10.43 in] | _                   | _                   | 170 mm<br>[6.69 in] |  |
| DN 150          | 356 mm<br>[14.00 in] | 285 mm<br>[11.22 in] | 300 mm<br>[11.81 in] | 355 mm<br>[13.98 in] | _                   | _                   | 195 mm<br>[7.68 in] |  |

# Inch flanges as per ASME B 16.5, Raised Face (RF) & Ring Type Joint (RTJ)

| Connection size |                      |                      | H <sup>3)</sup>      |                               |                        |                     |                     |  |
|-----------------|----------------------|----------------------|----------------------|-------------------------------|------------------------|---------------------|---------------------|--|
|                 | _                    | Class 150            | Class 300            | Class 600 Class 900 Class 150 |                        | Class 1500          | п"                  |  |
| ½ inch          | 127 mm<br>[5.00 in]  | 90 mm<br>[3.54 in]   | 95 mm<br>[3.74 in]   | 95 mm<br>[3.74 in]            |                        | 120 mm<br>[4.72 in] | 125 mm<br>[4.92 in] |  |
| 1 inch          | 140 mm<br>[5.50 in]  | 110 mm<br>[4.33 in]  | 125 mm<br>[4.92 in]  | 125 mm<br>[4.92 in]           |                        | 150 mm<br>[5.91 in] | 132 mm<br>[5.20 in] |  |
| 1½ inch         | 152 mm<br>[6.00 in]  | 125 mm<br>[4.92 in]  | 155 mm<br>[6.10 in]  | 155 mm<br>[6.10 in]           | Please use class 1500. | 180 mm<br>[7.09 in] | 140 mm<br>[5.51 in] |  |
| 2 inch          | 165 mm<br>[6.50 in]  | 150 mm<br>[5.91 in]  | 165 mm<br>[6.50 in]  | 165 mm<br>[6.50 in]           |                        | 215 mm<br>[8.46 in] | 145 mm<br>[5.71 in] |  |
| 2½ inch         | 178 mm<br>[7.00 in]  | 180 mm<br>[7.09 in]  | 190 mm<br>[7.48 in]  | 190 mm<br>[7.48 in]           |                        | 245 mm<br>[9.65 in] | 153 mm<br>[6.02 in] |  |
| 3 inch          | 254 mm<br>[10.00 in] | 190 mm<br>[7.48 in]  | 210 mm<br>[8.27 in]  | 210 mm<br>[8.27 in]           | 240 mm<br>[9.45 in]    | _                   | 160 mm<br>[6.30 in] |  |
| 4 inch          | 305 mm<br>[12.00 in] | 230 mm<br>[9.06 in]  | 255 mm<br>[10.04 in] | 275 mm<br>[10.83 in]          | 290 mm<br>[11.42 in]   | _                   | 170 mm<br>[6.69 in] |  |
| 6 inch          | 356 mm<br>[14.00 in] | 280 mm<br>[11.02 in] | 320 mm<br>[12.60 in] | 355 mm<br>[13.98 in]          | _                      | _                   | 195 mm<br>[7.68 in] |  |

<sup>&</sup>lt;sup>3)</sup> The specified values result from the dimensions of the respective turbine plus ECO X-K-X pulse amplifier.

# **Ordering Code**

|                                                                                                                                      | HM -    | XXX -                                                                                                         | XXX               | - | XXX                                                               | - | XX | - | XX          |
|--------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------|-------------------|---|-------------------------------------------------------------------|---|----|---|-------------|
| Connection size  DN 15 DN 25 DN 40 DN 50 DN 65 DN 80 DN 100 DN 150 ½ inch 1 inch 1 ½ inch 2 inch 2 inch 3 inch 4 inch 6 inch         |         | 015<br>025<br>040<br>050<br>065<br>080<br>100<br>150<br>½"<br>1"<br>1½"<br>2"<br>2"<br>2 ½"<br>3"<br>4"<br>6" |                   |   |                                                                   |   |    |   |             |
| Flange norm & form DIN EN 1092-1 Form B ASME B16.5 Raised Face ASME B16.5 Ring Type Joint                                            |         |                                                                                                               | FDB<br>FAB<br>FAR |   |                                                                   |   |    |   |             |
| Pressure rating PN 16 PN 40 PN 100 PN 160 PN 250 Class 150 Class 300 Class 600 Class 900 Class 1500                                  |         |                                                                                                               |                   |   | 16<br>40<br>100<br>160<br>250<br>150<br>300<br>600<br>900<br>1500 |   |    |   |             |
| Material housing and internal parts DIN 1.4404 [AISI 316L]                                                                           |         |                                                                                                               |                   |   |                                                                   |   | 04 |   |             |
| Pickup holes Single pickup M14x1.5 Single pickup M14x1.5; Exd-capable (not possible for DN 19 Dual pickup 2 x M14x1.5; phase-shifted | 5 / ½") |                                                                                                               |                   |   |                                                                   |   |    |   | G<br>Z<br>P |

Other variants on request

#### Calibration

In-house calibration is performed on volumetric calibration rigs or in our DAkkS calibration laboratory, depending on the needs of the client.

The KEM calibration lab uses a high-precision load cell system. With an accuracy of 0.05 % for the mass and 0.1 % for the volume of flowing liquids, we occupy a leading position worldwide. The German Accreditation Body (DAkkS) has accredited the laboratory engineers, processes and measuring equipment in accordance with the international standard DIN EN ISO/IEC 17025:2018.

The KEM calibration certificate not only verifies the accuracy of a flow meter, but also guarantees its traceability to national standards ensuring all requirements according to international quality standards are met.

The calibrations are performed with different hydrocarbons. This ensures the optimum simulation of changing operating conditions in density and viscosity even when temperatures change. This way the primary viscosity for the use of the flow meter can be specifically taken into account when viscosity fluctuations occur in a customised application.

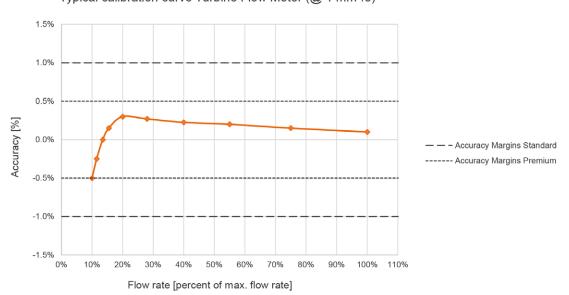
The calibration result is the specified calibration factor (K-factor) in pulses per litre. This K-factor accordingly applies only at a certain flow velocity or a certain flow rate.

The calibration factor varies only very slightly at different volume flow rates. The individual measuring points provide the calibration curve of the flow meter from which the average K-factor is determined. The average calibration factor applies to the entire measuring range.

The linearity specification (percent deviation) refers to the average K-factor. To further increase the measurement accuracy in onsite use, the specific K-factors can be used to calculate the flow rate. For this, KEM also supplies optional special electronics.

### Calculation of volume flow

The flow is directly dependent on the measured frequency and the associated calibration factor:


$$Q = \frac{f * 60}{K} I/min$$

Q = Volume Flow

f = Measuring frequency

K = K-Factor

## Typical calibration curve Turbine Flow Meter (@ 1 mm²/s)



## **KEM Headquarters**

Liebigstraße 5 85757 Karlsfeld Germany

T. +49 8131 59391-0 F. +49 8131 92604

info@kem-kueppers.com

#### **KEM Sales**

Liebigstraße 5 85757 Karlsfeld Germany

T. +49 8131 59391-100 F. +49 8131 92604

sales@kem-kueppers.com

## **KEM Manufacturing Center**

Wettzeller Straße 22 93444 Bad Kötzting Germany

T. +49 9941 9423-0 F. +49 9941 9423-23

production@kem-kueppers.com

#### **KEM Service & Repairs**

Wettzeller Straße 22 93444 Bad Kötzting Germany

T. +49 9941 9423-37 F. +49 9941 9423-24

service@kem-kueppers.com

More distributors & partners can be found at: www.kem-kueppers.com